Thursday 3 January 2013

Intoduction To Stepper Motor

►Introduction

This section of tutorial will explain you everything that you need to know about stepper motors. Stepper motors can be used in various areas of your microcontroller projects such as making robots, robotic arm, automatic door lock system etc. This tutorial will explain you construction of stepper motors (unipolar and bipolar stepper motors ), basic pricipal, different controlling types (Half step and Full step), Interfacing Techniques (using L293D or ULN2003) and programming your microcontroller in C and assembly to control stepper motor.


Unipolar stepper motor
The unipolar stepper motor has five or six wires and four coils (actually two coils divided by center connections on each coil). The center connections of the coils are tied together and used as the power connection. They are called unipolar steppers because power always comes in on this one pole.


Bipolar stepper motor
The bipolar stepper motor usually has four wires coming out of it. Unlike unipolar steppers, bipolar steppers have no common center connection. They have two independent sets of coils instead. You can distinguish them from unipolar steppers by measuring the resistance between the wires. You should find two pairs of wires with equal resistance. If you've got the leads of your meter connected to two wires that are not connected (i.e. not attached to the same coil), you should see infinite resistance (or no continuity).




As already said, we will talk mostly on "Unipolar stepper motors" which is most common type of stepper motor available in the market.A simple example of 6 lead step motor is given below and in 5 lead step motor wire 5 and 6 are joined together to make 1 wire as common.


Unipolar stepper motor coils


►Working of Stepper Motor

Now lets discuss the operation pricipal of a stepper motor. When we energize a coil of stepper motor, The shaft of stepper motor (which is actually a permanent magnet) align itself according to poles of energized coil. So when motor coils are energized in a particular sequence, motor shaft tend to align itself according to pole of coils and hence rotates. A small example of energizing operation is given below.

working principal of stepper motor


You can see in the example, when coil "A" is energized, A north-south polarity is generated at "A+A\" as shown in the figure above and magnetic shaft automatically align itself according to the poles generated. When the next coil is energized the shaft again align itself and take a step. Hence the working pricipal.

working principal of stepper motor


We have seen that to make the stepper motor work, we need to energize coil in a sqeuence. The explaination and generation of the sequence is explaind in the next section of the tutorial.

No comments:

Post a Comment